Concatenated Residual Attention UNet for Semantic Segmentation of Urban Green Space

Author:

Men Guoqiang,He Guojin,Wang Guizhou

Abstract

Urban green space is generally considered a significant component of the urban ecological environment system, which serves to improve the quality of the urban environment and provides various guarantees for the sustainable development of the city. Remote sensing provides an effective method for real-time mapping and monitoring of urban green space changes in a large area. However, with the continuous improvement of the spatial resolution of remote sensing images, traditional classification methods cannot accurately obtain the spectral and spatial information of urban green spaces. Due to complex urban background and numerous shadows, there are mixed classifications for the extraction of cultivated land, grassland and other ground features, implying that limitations exist in traditional methods. At present, deep learning methods have shown great potential to tackle this challenge. In this research, we proposed a novel model called Concatenated Residual Attention UNet (CRAUNet), which combines the residual structure and channel attention mechanism, and applied it to the data source composed of GaoFen-1 remote sensing images in the Shenzhen City. Firstly, the improved residual structure is used to make it retain more feature information of the original image during the feature extraction process, then the Convolutional Block Channel Attention (CBCA) module is applied to enhance the extraction of deep convolution features by strengthening the effective green space features and suppressing invalid features through the interdependence of modeling channels.-Finally, the high-resolution feature map is restored through upsampling operation by the decoder. The experimental results show that compared with other methods, CRAUNet achieves the best performance. Especially, our method is less susceptible to the noise and preserves more complete segmented edge details. The pixel accuracy (PA) and mean intersection over union (MIoU) of our approach have reached 97.34% and 94.77%, which shows great applicability in regional large-scale mapping.

Funder

National Natural Science Foundation of China

the Strategic Priority Research Program of the Chinese Academy of Sciences

Publisher

MDPI AG

Subject

Forestry

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3