Enzymatic Formation of Polyaniline, Polypyrrole, and Polythiophene Nanoparticles with Embedded Glucose Oxidase

Author:

German Natalija,Popov AntonORCID,Ramanaviciene Almira,Ramanavicius ArunasORCID

Abstract

Polyaniline (PANI), polypyrrole (Ppy), and polythiophene (PTh) composite nanoparticles with embedded glucose oxidase (GOx) were formed by enzymatic polymerization of corresponding monomers (aniline, pyrrole, and thiophene). The influence of monomers concentration, the pH of solution, and the ratio of enzyme/substrate on the formation of PANI/GOx, Ppy/GOx, and PTh/GOx composite nanoparticles were spectrophotometrically investigated. The highest formation rate of PANI-, Ppy-, and PTh-based nanoparticles with embedded GOx was observed in the sodium acetate buffer solution, pH 6.0. The increase of optical absorbance at λmax = 440 nm, λmax = 460 nm, and λmax = 450 nm was exploited for the monitoring of PANI/GOx, Ppy/GOx and PTh/GOx formation, respectively. It was determined that the highest polymerization rate of PANI/GOx, Ppy/GOx, and PTh/GOx composite nanoparticles was achieved in solution containing 0.75 mg mL−1 of GOx and 0.05 mol L−1 of glucose. The influence of the enzymatic polymerization duration on the formation of PANI/GOx and Ppy/GOx composite nanoparticles was spectrophotometrically investigated. The most optimal duration for the enzymatic synthesis of PANI/GOx and Ppy/GOx composite nanoparticles was in the range of 48–96 h. It was determined that the diameter of formed PANI/GOx and Ppy/GOx composite nanoparticles depends on the duration of polymerization using dynamic light scattering technique (DLS), and it was in the range of 41–167 nm and 65–122 nm, when polymerization lasted from 16 to 120 h.

Funder

European Regional Development Fund

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3