CoMn2O4 Catalyst Prepared Using the Sol-Gel Method for the Activation of Peroxymonosulfate and Degradation of UV Filter 2-Phenylbenzimidazole-5-sulfonic Acid (PBSA)

Author:

Lin Chihao,Shi Dejian,Wu Zhentao,Zhang Lingfeng,Zhai Zhicai,Fang YingsenORCID,Sun Ping,Han Ruirui,Wu Jiaqiang,Liu HuiORCID

Abstract

In this study, a bimetallic oxide catalyst of cobalt-manganese (CoMn2O4) was synthesized using the sol-gel method, and it was then characterized using a variety of techniques such as scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) spectroscopy, X-ray photoelectron spectroscopy (XPS), and nitrogen adsorption–desorption isotherms. The obtained novel catalyst, i.e., CoMn2O4, was then used as an activator of peroxymonosulfate (PMS) for the catalytic degradation of a commonly-used UV filter, 2-phenylbenzimidazole-5-sulfonic acid (PBSA) in water. The effects of various factors (e.g., catalyst dosage, PMS concentration, reaction temperature, and pH) in the process were also evaluated. Chemical scavengers and electron paramagnetic resonance (EPR) tests showed that the •OH and SO4•− were the main reactive oxygen species. Furthermore, this study showed that CoMn2O4 is a promising catalyst for activating PMS to degrade the UV filters.

Funder

National Natural Science Foundation of China

Department of Education of Zhejiang Province

the key project of Nanhu college of Jiaxing University

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3