An Integrated Model of Park-And-Ride Facilities for Sustainable Urban Mobility

Author:

Ortega JairoORCID,Tóth János,Péter Tamás,Moslem SarbastORCID

Abstract

The Park and Ride (P&R) System is part of a set of parking policies provided by Sustainable Urban Mobility Plans (SUMPs) that have been used in developing efficient, safe and environmentally friendly solutions to reduce the undesirable effects of private vehicles in Central Business District (CBD). In fact, the P&Rs are allocated near public transportation stations to ease transfer from a private vehicle to a public transportation mode. Therefore, the P&R system is considered as an alternative transport mode in which the location and potential demand of each facility are fundamental components to be evaluated within sustainable urban planning. The paper proposes an integrated model of P&R facilities based on estimate the potential demand through a mathematical model of the seven park-and-ride (P&R) facilities (designated A to G) in Cuenca city, Ecuador. The developed integrated model includes two cost functions: one is the P&R mode, and the second is the private car mode. Additionally, a SUMP is integrated into the model as a data collection source in order to find the required parameters for the cost functions and origin–destination (O-D) matrix of private vehicles. The results showed that three out of the seven P&R facilities (P&R C, P&R G, and P&R A) had the highest demand (70% of the overall demand). Consequently, these three P&R facilities were studied separately using the same developed model, and the demand proved to be the highest for P&R facility “C” (39% out of 70%). In conclusion, SUMPs, as a methodology for data collection and a mathematical model, proved to be an effective integrated method for evaluating the most attractive P&R location based on the potential demand.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3