Optimization of Truck–Cargo Online Matching for the Less-Than-Truck-Load Logistics Hub under Real-Time Demand

Author:

Tang Weilin1,Chen Xinghan1,Lang Maoxiang1,Li Shiqi2,Liu Yuying1,Li Wenyu1

Affiliation:

1. Key Laboratory of Transport Industry of Big Data Application Technologies for Comprehensive Transport, School of Traffic and Transportation, Beijing Jiaotong University, Beijing 100044, China

2. China North Artificial Intelligence & Innovation Research Institute, Beijing 100072, China

Abstract

Reasonable matching of capacity resources and transported cargoes is the key to realizing intelligent scheduling of less-than-truck-load (LTL) logistics. In practice, there are many types and numbers of participating objects involved in LTL logistics, such as customers, orders, trucks, unitized implements, etc. This results in a complex and large number of matching schemes where truck assignments interact with customer order service sequencing. For the truck–cargo online matching problem under real-time demand, it is necessary to comprehensively consider the online matching process of multi-node orders and the scheduling of multi-types of trucks. Combined with the actual operation scenario, a mixed-integer nonlinear programming model is introduced, and an online matching algorithm with a double-layer nested time window is designed to solve it. By solving the model in a small numerical case using Gurobi and the online matching algorithm, the validity of the model and the effectiveness of the algorithm are verified. The results indicate that the online matching algorithm can obtain optimization results with a lower gap while outperforming in terms of computation time. Relying on the realistic large-scale case for empirical analysis, the optimization results in a significant reduction in the number of trips for smaller types of trucks, and the average truck loading efficiency has reached close to 95%. The experimental results demonstrate the general applicability and effectiveness of the algorithm. Thus, it helps to realize the on-demand allocation of capacity resources and the timely response of transportation scheduling of LTL logistics hubs.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3