Prediction Model of Ammonia Nitrogen Concentration in Aquaculture Based on Improved AdaBoost and LSTM

Author:

Wang Yiyang1,Xu Dehao2,Li Xianpeng2,Wang Wei2ORCID

Affiliation:

1. School of Electrical and Automation Engineering, Liaoning Institute of Science and Technology, Benxi 117004, China

2. College of Information Engineering, Dalian Ocean University, Dalian 116023, China

Abstract

The concentration of ammonia nitrogen is significant for intensive aquaculture, and if the concentration of ammonia nitrogen is too high, it will seriously affect the survival state of aquaculture. Therefore, prediction and control of the ammonia nitrogen concentration in advance is essential. This paper proposed a combined model based on X Adaptive Boosting (XAdaBoost) and the Long Short-Term Memory neural network (LSTM) to predict ammonia nitrogen concentration in mariculture. Firstly, the weight assignment strategy was improved, and the number of correction iterations was introduced to retard the shortcomings of data error accumulation caused by the AdaBoost basic algorithm. Then, the XAdaBoost algorithm generated and combined several LSTM su-models to predict the ammonia nitrogen concentration. Finally, there were two experiments conducted to verify the effectiveness of the proposed prediction model. In the ammonia nitrogen concentration prediction experiment, compared with the LSTM and other comparison models, the RMSE of the XAdaBoost–LSTM model was reduced by about 0.89–2.82%, the MAE was reduced by about 0.72–2.47%, and the MAPE was reduced by about 8.69–18.39%. In the model stability experiment, the RMSE, MAE, and MAPE of the XAdaBoost–LSTM model decreased by about 1–1.5%, 0.7–1.7%, and 7–14%. From these two experiments, the evaluation indexes of the XAdaBoost–LSTM model were superior to the comparison models, which proves that the model has good prediction accuracy and stability and lays a foundation for monitoring and regulating the change of ammonia nitrogen concentration in the future.

Funder

Open Project of Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, China

Publisher

MDPI AG

Reference24 articles.

1. Exploration of aquaculture standardization in China;Wang;China Aquac.,2019

2. Current situation and considerations on the development of deep-sea fisheries based on large-scale fisheries platforms;Zhang;China Agron. Bull.,2020

3. Prediction of ammonia contaminants in the aquaculture ponds using soft computing coupled with wavelet analysis;Nagaraju;Environ. Pollut.,2023

4. Comparison of Phenate and Salicylate Methods for Determination of Total Ammonia Nitrogen in Freshwater and Saline Water;Le;J. World Aquac. Soc.,2012

5. A Local Weighted Linear Regression (LWLR) Ensemble of Surrogate Models Based on Stacking Strategy: Application to Hydrodynamic Response Prediction for Submerged Floating Tunnel (SFT);Xu;Appl. Ocean. Res.,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3