Digital Fracture Surface Morphology and Statistical Characteristics of Granite Brazilian Tests after Non-Steady-State Thermal Disturbance

Author:

Chen Yongjun12,Yin Tubing1

Affiliation:

1. School of Resources and Safety Engineering, Central South University, Changsha 410083, China

2. Department of Civil Engineering, Monash University, 3800 Melbourne, Australia

Abstract

With the widespread advent of digital technologies, traditional perspectives in rock mechanics research are poised for further expansion. This paper presents a Brazilian test conducted on granite after non-steady-state thermal disturbance at 25 °C, 200 °C, 400 °C, and 600 °C, with detailed documentation of the damage process and failure response using an acoustic emission (AE) apparatus and a digital image correlation (DIC) system. Subsequently, utilizing point cloud data captured by a three-dimensional (3D) laser scanning system, a digital reconstruction of the failed specimen’s fracture surface was accomplished. The 3D fractal characteristics and roughness response of the digitized fracture surface were studied using the box-counting method and least squares approach. Furthermore, texture information of the digitized fracture surface was calculated using the Gray Level Co-occurrence Matrix (GLCM), and statistical characteristics describing the elevation distribution were analyzed. The results elucidate the influence of thermal disturbance temperature on the mechanical parameters of the specimen, acoustic emission behavior, surface strain field evolution, and digital fracture morphology characteristics. The findings indicate a non-linear degradation effect of temperature on the specimen’s tensile strength, with a reduction reaching 80.95% at 600 °C, where acoustic emission activity also peaked. The rising thermal disturbance temperature inhibited the crack initiation load at the specimen’s center but expanded the high-strain concentration areas and the growth rate of horizontal displacement. Additionally, varying degrees of linear or non-linear relationships were discovered between thermal disturbance temperature and the 3D fractal dimension of the fracture surface, average roughness (Ra), peak roughness (Rz), and root mean square roughness (Rq), confirming the potential of Rsm in predicting the 3D fractal dimension of Brazilian test fracture surfaces. The study of the GLCM of the digitized 3D fracture surface demonstrated a high dependency of its four second-order statistical measures on thermal disturbance temperature. Finally, the statistical parameters of the fracture surface’s elevation values showed a significant non-linear relationship with thermal disturbance temperature, with a critical temperature point likely existing between 400 and 600 °C that could precipitate a sudden change in the fracture surface’s elevation characteristics.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities of Central South University

China Scholarship Council

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3