Multi-Objective Green Closed-Loop Supply Chain Management with Bundling Strategy, Perishable Products, and Quality Deterioration

Author:

Pakdel Golnaz Hooshmand1,He Yong1ORCID,Pakdel Sina Hooshmand2

Affiliation:

1. School of Economics and Management, Southeast University, Nanjing 211189, China

2. Engineering Faculty, Science & Research Branch, Islamic Azad University, Tehran 1477893855, Iran

Abstract

This study presents a four-objective mathematical model to improve closed-loop supply chain (CLSC) management. The aim of this research is to reduce the costs of the entire chain, risk, emission of pollutants, and time to deliver the product to the customer in uncertain demand condition. In this paper, the NSGAII algorithm is used to solve the model. In this algorithm, among the answers of each generation, a number of them are selected using the two-run tournament selection method. In the binary selection method, the answers are randomly selected from the population, and then a comparison is made between these two answers, and whichever is better is finally selected. The selection criteria in NSGA-II are, firstly, the rank, and secondly, the crowding distance related to the answer. Also, the performance of the NSGA-II algorithm on the same model and data has been compared with the MOPSO algorithm. In the proposed algorithm, if it encounters an impossible solution, it exits the local mode and solves the problem in global conditions. The results show that the proposed method strikes a better balance between discovery and efficiency criteria and avoids falling into local optima. Therefore, in addition to its effectiveness in discovering optimal answers, the genetic-based method has high speed and subsequently, high convergence and diversity rates compared to the particle swarm method. Also, compared to previous methods in the green closed-loop supply chain, the proposed method is better than the modified genetic algorithm, reducing the costs of the chain by about 2.38%.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3