Attribute Graph Embedding Based on Multi-Order Adjacency Views and Attention Mechanisms

Author:

Sheng Jinfang1,Yang Zili1,Wang Bin1ORCID,Chen Yu1ORCID

Affiliation:

1. School of Computer Science and Engineering, Central South University, Changsha 410083, China

Abstract

Graph embedding plays an important role in the analysis and study of typical non-Euclidean data, such as graphs. Graph embedding aims to transform complex graph structures into vector representations for further machine learning or data mining tasks. It helps capture relationships and similarities between nodes, providing better representations for various tasks on graphs. Different orders of neighbors have different impacts on the generation of node embedding vectors. Therefore, this paper proposes a multi-order adjacency view encoder to fuse the feature information of neighbors at different orders. We generate different node views for different orders of neighbor information, consider different orders of neighbor information through different views, and then use attention mechanisms to integrate node embeddings from different views. Finally, we evaluate the effectiveness of our model through downstream tasks on the graph. Experimental results demonstrate that our model achieves improvements in attributed graph clustering and link prediction tasks compared to existing methods, indicating that the generated embedding representations have higher expressiveness.

Funder

Key Research and Development Program of Hunan Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3