Effect of Skewness Orientation on Morphological Adjustments in Alluvial Meandering Streams

Author:

Good Ryan1,Nguyen David2ORCID,Bonakdari Hossein3ORCID,Binns Andrew2,Gharabaghi Bahram2ORCID

Affiliation:

1. Ganaraska Region Conservation Authority, Port Hope, ON L1A 3V8, Canada

2. School of Engineering, University of Guelph, Guelph, ON N1G 2W1, Canada

3. Department of Civil Engineering, University of Ottawa, Ottawa, ON K1N 6N5, Canada

Abstract

Predicting morphological adjustments in alluvial meandering streams remains a challenging task due to the complex nature of the governing inter-related dynamic flow and sediment transport processes. This difficulty is increased in streams with irregular single-channel planform geometries, such as skewed meanders, where the meander apex is shifted in either the up-valley or down-valley direction relative to the meander centroid. Research in confined bank flume experiments has shown that the geometry difference affects flow characteristics and streambed development. The present study extends upon these findings by being the first to investigate the effects of skewness orientation in a wide-channel flume with a fully unconfined bed and banks. Three experiments were completed with an up-valley skewed, a down-valley skewed, and a non-skewed symmetrical channel, using well-sorted coarse sand and no sediment feed. The results had some variabilities in erosion and magnitude of morphological developments due to initial experimental conditions, but our analysis of the bedform positioning showed notable similarities and differences between the geometries. Bedforms typically formed upstream of the apex, with differences in their stream-wise direction extents. This research highlights how channel width-to-depth ratio and bank erodibility significantly impact river evolution, offering new insights into the dynamics of skewed meandering river channels. This study is a novel step towards a better understanding of skewed meandering rivers in unconfined alluvial channels and highlights opportunities for further research.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3