Synoptic Analysis of Flood-Causing Rainfall and Flood Characteristics in the Source Area of the Yellow River

Author:

Jin Lijun1,Yan Changsheng1,Yuan Baojun2,Liu Jing1,Liu Jifeng1

Affiliation:

1. Hydrology Bureau, Yellow River Conservancy Commission, Zhengzhou 450004, China

2. Henan Meteorological Observation Data Center, Henan Meteorological Service, Zhengzhou 450003, China

Abstract

The source area of the Yellow River (SAYR) in China is an important water yield and water-conservation area in the Yellow River. Understanding the variability in rainfall and flood over the SAYR region and the related mechanism of flood-causing rainfall is of great importance for the utilization of flood water resources through the optimal operation of cascade reservoirs over the upper Yellow River such as Longyangxia and Liujiaxia, and even for the prevention of flood and drought disasters for the entire Yellow River. Based on the flow data of Tangnaihai hydrological station, the rainfall data of the SAYR region and NCEP-NCAR reanalysis data from 1961 to 2020, three meteorological conceptual models of flood-causing rainfall—namely westerly trough type, low vortex shear type, and subtropical high southwest flow type—are established by using the weather-type method. The mechanism of flood-causing rainfall and the corresponding flood characteristics of each weather type were investigated. The results show that during the process of flood-causing rainfall, in the westerly trough type, the mid- and high-latitude circulation is flat and fluctuating. In the low vortex shear type, the high pressures over the Ural Mountains and the Okhotsk Sea are stronger compared to other types in the same period, and a low vortex shear line is formed in the west of the SAYR region at the low level. The rain is formed during the eastward movement of the shear line. In the subtropical high southwest flow type, the low trough of Lake Balkhash and the subtropical high are stronger compared to other types in the same period. Flood-causing rainfall generally occurs in areas with low-level convergence, high-level negative vorticity, low-level positive vorticity, convergence of water vapor flux, a certain amount of atmospheric precipitable water, and low-level cold advection. In terms of flood peak increment and the maximum accumulated flood volume, the westerly trough type has a long duration and small flood volume, and the low vortex shear type and the subtropical high southwest flow type have a short duration and large flood volume.

Funder

National Key Research and Development Program of China

Yellow River Water Scientific Research Project of the National Natural Science

Science and Technology Research Foundation Program of Henan Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3