Affiliation:
1. Department of Mechanical and Aerospace Engineering, College of Engineering, United Arab Emirates University, Abu Dhabi P.O. Box 15551, United Arab Emirates
2. National Space Science and Technology Center (NSSTC), United Arab Emirates University, Abu Dhabi P.O. Box 15551, United Arab Emirates
Abstract
This paper reports on the effect of structural materials on heat loss-associated propulsion performance degradation of monopropellant thrusters in the micro scale. In order to address the effect of fabrication materials on heat loss, propellant flow characteristics, and propulsion performance, a conjugate heat transfer numerical study has been conducted considering several practical substrate candidates for microthrusters. The results were analyzed with respect to the thermal diffusivity of the materials, which revealed different propulsion performance characteristics and inner nozzle flow characteristics due to varying amounts of heat loss, depending on the microfabrication materials used and propellant enthalpies. Regardless of propellant enthalpies, however, there was a dramatic degradation in the amount of the thrust produced with respect to thermal diffusivity, particularly in the range of low thermal diffusivity. Glass, among the material types compatible with fabrication processes in regard to microthrusters, exhibited a 4% degradation in thrust performance for the 50 mN class microthruster considered, with the least degradation, while copper, with 7% degradation, exhibited the greatest amount of degradation among the materials considered. With varying chamber pressure and Mach number at the nozzle exit depending on structural materials, the results also indicated the necessity of heat loss consideration in a microthruster design process.
Funder
United Arab Emirates University
Reference41 articles.
1. Massaro Tieze, S., Liddell, L.C., Santa Maria, S.R., and Bhattacharya, S. (2020). BioSentinel: A Biological CubeSat for Deep Space Exploration. Astrobiology, 20.
2. Klesh, A., Clement, B., Colley, C., Essmiller, J., Forgette, D., Krajewski, J., Marinan, A., Martin-Mur, T., Steinkraus, J., and Sternberg, D. (2018, January 4–9). MarCO: Early Operations of the First CubeSats to Mars. Proceedings of the 32nd Annual AIAA/USU Conference on Small Satellites, Logan, UT, USA.
3. BioSentinel: A 6U Nanosatellite for Deep-Space Biological Science;Ricco;IEEE Aerosp. Electron. Syst. Mag.,2020
4. High-Resolution Image and Video CubeSat (HiREV): Development of Space Technology Test Platform Using a Low-Cost CubeSat Platform;Cho;Int. J. Aerosp. Eng.,2019
5. Asteroid Impact and Deflection Assessment mission;Cheng;Acta Astronaut.,2015
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献