Study on Numerical Algorithm of the N-S Equation for Multi-Body Flows around Irregular Disintegrations in Near Space

Author:

Han Zheng,Li Zhihui,Bai Zhiyong,Li Xuguo,Zhang Jiazhong

Abstract

There has been a concern that the accurate numerical simulation of multi-body flow, which is caused by the multiple disintegrations of expired spacecraft re-entering into the near space, has a critical bottleneck impact on the falling area of the disintegrated debris. To solve this problem, an O-type grid topology method has been designed for the multi-body flow field of irregular debris formed by multiple disintegrations in near space, and a finite-volume implicit numerical scheme has been constructed for the Navier-Stokes equations to solve the aerodynamic interference characteristics of irregular multi-body flow, and further the N-S equation numerical algorithm has been established for the irregular multi-body flows in near space. The reliability of the method has been verified by the comparison of the present computation and the experiment of the low-density wind tunnel for the two-body flow of sphere, cylinder and square scripts. The objects of this study are from the multiple disintegrations of the Tiangong-1 spacecraft during uncontrolled re-entry into the atmosphere, including propelling cylinders and low-temperature lock cabinets. A series of simulations of multi-body flow mechanisms around different combinations have been carried out with varied shapes and spacing. As a result, it is found that when the distance of irregular debris (e.g., two propelling cylinders) in the near space is in the range of Δy < 3D or Δx < D, there is an obvious multi-body interference between debris, and the flow characteristics are obviously changed. When the distance between the debris in near space reaches a certain level, the influence of mutual interference can be ignored. For example, when the y-direction distance between multiple bodies is greater than 3D, the flow interference tends to be small and can be ignored, and we can regard them as two separate pieces to be carried out by the numerical prediction of flight track and falling area in engineering application. The results provide a practical design criterion for the integrated simulation platform which is used to simulate the multi-physics complex aerodynamics of space vehicles from the free-molecule flow of the outer space to the near-ground continuum flow.

Funder

National Natural Science Foundation of China

manned space engineering technology

Publisher

MDPI AG

Subject

Aerospace Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3