Integrated Magnetic Management of Stored Angular Momentum in Autonomous Attitude Control Systems

Author:

Colagrossi AndreaORCID

Abstract

Autonomous spacecraft operations are at the front end of modern research interests, because they enable space missions that would not be viable only with ground control. The possibility to exploit onboard autonomy to deal with platform management and nominal housekeeping is thus beneficial to realize complex space missions, which could then rely on ground support only for the mission-critical phases. One routine operation that most spacecraft must perform is stored angular momentum management to maintain fully usable momentum exchange actuators. The execution of this activity may be scheduled, commanded from the ground, or automatically triggered when certain thresholds are reached. However, autonomous angular momentum management may interfere with other primary spacecraft operations if executed with a dedicated and separate system mode. This paper presents the magnetic management of stored angular momentum, integrated with the main attitude control system. The system design and implementation are intended for autonomous spacecraft, and it can be operated without significant ground support. The paper describes the system architecture and the attitude control laws integrated with the magnetic angular momentum management. Specifically, the capability of the autonomous system to keep the internal angular momentum far from the saturation and far from the zero-crossing levels is highlighted. The performance of an example attitude control system with four reaction wheels and three magnetic torquers is presented and discussed, with the simulation results at model-in-the-loop (MIL) level.

Funder

Italian Ministry of University and Research (MUR) program

European Union “FSE-REACT-EU”

Publisher

MDPI AG

Subject

Aerospace Engineering

Reference31 articles.

1. Optimal Magnetic Momentum Control for Inertially Pointing Spacecraft;Lovera;Eur. J. Control,2001

2. Harvey, B. (2007). Soviet and Russian Lunar Exploration, Springer.

3. Quaternion feedback for spacecraft large angle maneuvers;Wie;J. Guid. Control Dyn.,1985

4. Variable-structure control of spacecraft large-angle maneuvers;Vadali;J. Guid. Control Dyn.,1986

5. Stabilization and optimality results for the attitude control problem;Tsiotras;J. Guid. Control Dyn.,1996

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3