Challenges and Solutions for High-Speed Aviation Piston Pumps: A Review

Author:

Zhang Chenchen,Zhu Chenhang,Meng BinORCID,Li Sheng

Abstract

As a core power component, aviation piston pumps are widely used in aircraft hydraulic systems. The piston pump’s power-to-weight ratio is extremely crucial in the aviation industry, and the “ceiling effect” of the PV value (product of compressive stress and linear velocity) limits the piston pump’s ability to increase working pressure. Therefore, increasing the piston pump’s speed has been a real breakthrough in terms of further enhancing the power-to-weight ratio. However, the piston pump’s design faces several challenges under the extreme operating conditions at high speeds. This study reviews several problems aviation axial piston pumps face under high-speed operating conditions, including friction loss, cavitation, cylinder overturning, flow pressure pulsation, and noise. It provides a detailed description of the research state of the art of these problems and potential solutions. The axial piston pump’s inherent sliding friction pair, according to the report, considerably restricts further increasing of its speed and power-to-weight ratio. With its mature technology and deep research base, the axial piston pump will continue to dominate the aviation pumps. Furthermore, breaking the limitation of the sliding friction pair on speed and power density, thus innovating a novel structure of the piston pump, is also crucial. Therefore, this study also elaborates on the working principle and development process of the two-dimensional (2D) piston pump, which is a representative of current high-speed pump structure innovation.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Aerospace Engineering

Reference155 articles.

1. Hyundai Aircraft Hydraulic Technology;Ouyang,2016

2. Fundamental Theory and Application of Thermal Analysis for Hydraulic Piston Pumps;Li,2016

3. Experimental investigations of the slipper spin in an axial piston pump

4. Investigation on structural optimization of anti-overturning slipper of axial piston pump

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3