A Nonlinear Ultrasonic Modulation Method for Crack Detection in Turbine Blades

Author:

Mevissen FrankORCID,Meo MicheleORCID

Abstract

In modern gas turbines, efforts are being made to improve efficiency even further. This is achieved primarily by increasing the generated pressure ratio in the compressor and by increasing the turbine inlet temperature. This leads to enormous loads on the components in the hot gas region in the turbine. As a result, non-destructive testing and structural health monitoring (SHM) processes are becoming increasingly important to gas turbine manufacturers. Initial cracks in the turbine blades must be identified before catastrophic events occur. A proven method is the linear ultrasound method. By monitoring the amplitude and phase fluctuations of the input signal, structural integrity of the components can be detected. However, closed cracks or small cracks cannot be easily detected due to a low impedance mismatch with the surrounding materials. By contrast, nonlinear ultrasound methods have shown that damages can be identified at an early stage by monitoring new signal components such as sub- and higher harmonics of the fundamental frequency in the frequency spectrum. These are generated by distortion of the elastic waveform due to damage/nonlinearity of the material. In this paper, new global nonlinear parameters were derived that result from the dual excitation of two different ultrasound frequencies. These nonlinear features were used to assess the presence of cracks as well as their qualitative sizes. The proposed approach was tested on several samples and turbine blades with artificial and real defects. The results were compared to samples without failure. Numerical simulations were conducted to investigate nonlinear elastic interaction of the stress waves with the damage regions. The results show a clear trend of nonlinear parameters changing as a function of the crack size, demonstrating the capability of the proposed approach to detect in-service cracks.

Publisher

MDPI AG

Subject

Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3