Plasma Assisted Re-Ignition of Aeroengines under High Altitude Conditions

Author:

Mehdi GhazanfarORCID,Bonuso Sara,De Giorgi Maria GraziaORCID

Abstract

Re-ignition of aeroengines under high altitude conditions is of great importance to the safety and use of lean-burn flame. This study is focused on the experimental and numerical characterization of flow dynamics and flame re-ignition in a rectangular burner. A ring-needle type plasma actuator was considered and run by high-voltage (HV) nanopulsed plasma generator. The electrical power delivered to the fluid and an optimal value of reduced electric field (EN) was calculated considering non-reactive flow. Smoke flow visualizations using a high-speed camera and proper orthogonal decomposition (POD) were performed to recognize the most dominant flow structures. Experimental results revealed the transport effects due to plasma discharge, such as the induced flow, that could have a strong impact on the recirculation zone near the corners of combustor, improving the mixing performance and reducing the ignition delay time. Two different numerical tools (ZDPlasKin and Chemkin) were used to investigate the ignition characteristics. ZDPlasKin calculated the thermal effect and the plasma kinetic of nanopulsed plasma discharge at the experimentally measured EN. Finally, based on the output of ZDPlasKin, Chemkin estimated the flame ignition at low pressure and low temperature conditions. It was noticed that time required to achieve the maximum flame temperature with plasma actuation is significantly less than the auto-ignition time (‘clean case’, simulation result of the model without considering the plasma effect). Maximum reduction in ignition time was observed at inlet pressure 1 bar (3.5 × 10−5 s) with respect to the clean case (1.1 × 10−3 s). However, as the inlet pressure is reduced, the ignition delay time was increased. At 0.6 bar flame ignition occurred in clean case at 0.0048 s and at 0.0022 s in presence of the plasma actuation, a further decrease of the pressure up to 0.4 bar leads the ignition at 0.0027 s and 0.0063 s in clean and plasma actuation, respectively.

Publisher

MDPI AG

Subject

Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3