An Effective Procedure to Build Space Object Datasets Based on STK

Author:

Wei Rongke1,Song Anyang12,Duan Huixian1,Pei Haodong1

Affiliation:

1. Key Laboratory of Infrared System Detection and Imaging Technologies, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China

2. School of Information Science and Technology, ShanghaiTech University, Shanghai 201210, China

Abstract

With the development of space technology, deep learning methods, with their excellent generalization ability, are increasingly applied in various space activities. The space object data is difficult to obtain, which greatly limits its application in space activities. The images of the existing public spacecraft dataset are mostly rendered, which not only lack physical meaning but also have limited data. In this paper, we propose an effective construction procedure to build a space object dataset based on STK, which can help to break the limitations of deep learning methods in space activities. Firstly, based on STK, we conduct orbit simulation for 24 space targets and establish the simulation dataset; secondly, we use 600 images of 6 typical targets and label them to build a real-shot validation dataset. Finally, the constructed space object dataset based on STK is verified to be effective through six semantic segmentation networks, which can be used to train the real spacecraft’s semantic segmentation. Lots of experiments show that the accuracy of migrating the training results of the simulation dataset to the real shooting dataset is slightly reduced, but the mPA is still greater than 85%. In particular, after adding orbital physics simulation data, the accuracy of six semantic segmentation methods is generally improved. Therefore, the STK-based physical simulation of orbit is an effective method for space object dataset construction.

Funder

Innovation Program CX-387 of the Shanghai Institute of Technical Physics

Publisher

MDPI AG

Subject

Aerospace Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Real-Time Simulation and Sensor Performance Evaluation of Space-Based Infrared Point Target Group;Applied Sciences;2023-08-30

2. Design of Inter-Satellite Link Between Multifunction Test Sat and Tiantuo 5;2023 IEEE 16th International Conference on Electronic Measurement & Instruments (ICEMI);2023-08-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3