Multi-Fidelity Adaptive Sampling for Surrogate-Based Optimization and Uncertainty Quantification

Author:

Garbo Andrea1ORCID,Parekh Jigar1,Rischmann Tilo1,Bekemeyer Philipp1

Affiliation:

1. Institute of Aerodynamics and Flow Technology, Germany Aerospace Center (DLR), 38108 Braunschweig, Germany

Abstract

Surrogate-based algorithms are indispensable in the aerospace engineering field for reducing the computational cost of optimization and uncertainty quantification analyses, particularly those involving computationally intensive solvers. This paper presents a novel approach for enhancing the efficiency of surrogate-based algorithms through a new multi-fidelity sampling technique. Unlike existing multi-fidelity methods which are based on a single multiplicative acquisition function, the proposed technique decouples the identification of the new infill sample from the selection of the fidelity level. The location of the infill sample is determined by leveraging the highest fidelity surrogate model, while the fidelity level used for its performance evaluation is chosen as the cheapest one within the “accurate enough” models at the infill location. Moreover, the methodology introduces the application of the Jensen–Shannon divergence to quantify the accuracy of the different fidelity levels. Overall, the resulting technique eliminates some of the drawbacks of existing multiplicative acquisition functions such as the risk of continuous sampling from lower and cheaper fidelity levels. Experimental validation conducted in surrogate-based optimization and uncertainty quantification scenarios demonstrates the efficacy of the proposed approach. In an aerodynamic shape optimization task focused on maximizing the lift-to-drag ratio, the multi-fidelity strategy achieved comparable results to standard single-fidelity sampling but with approximately a five-fold improvement in computational efficiency. Likewise, a similar reduction in computational costs was observed in the uncertainty quantification problem, with the resulting statistical values aligning closely with those obtained using traditional single-fidelity sampling.

Funder

German Federal Ministry for Economic Affairs and Climate Action

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3