Compressive Behaviour of 3D-Printed PETG Composites

Author:

Valvez SaraORCID,Silva Abílio P.ORCID,Reis Paulo N. B.ORCID

Abstract

It is known that 3D-printed PETG composites reinforced with carbon or Kevlar fibres are materials that can be suitable for specific applications in the aeronautical and/or automotive sector. However, for this purpose, it is necessary to understand their mechanical behaviour, which is not yet fully understood in terms of compression. Therefore, this study intends to increase the knowledge in this domain, especially in terms of static behaviour, as well as with regard to creep and stress relaxation due to the inherent viscoelasticity of the matrix. In this context, static, stress relaxation and creep tests were carried out, in compressive mode, using neat PETG and PETG composites reinforced with carbon and Kevlar fibres. From the static tests, it was found that the yield compressive strength decreased in both composites compared to the neat polymer. Values around 9.9% and 68.7% lower were found, respectively, when carbon and Kevlar fibres were added to the PETG. Similar behaviour was observed for compressive displacement, where a reduction of 20.4% and 46.3% was found, respectively. On the other hand, the compressive modulus increased by 12.4% when carbon fibres were added to the PETG matrix and decreased by 39.6% for Kevlar fibres. Finally, the stress relaxation behaviour revealed a decrease in compressive stresses over time for neat PETG, while the creep response promoted greater compressive displacement. In both situations, the response was very dependent on the displacement/stress level used at the beginning of the test. However, when the fibres were added to the polymer, higher stress relaxations and compressive displacements were observed.

Funder

Fundação para a Ciência e Tecnologia

Publisher

MDPI AG

Subject

Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3