A Simulation Study of Risk-Aware Path Planning in Mitigating the Third-Party Risk of a Commercial UAS Operation in an Urban Area

Author:

He XinyuORCID,Jiang Chengpeng,Li Lishuai,Blom HenkORCID

Abstract

UAS-based commercial services such as urban parcel delivery are expected to grow in the upcoming years and may lead to a large volume of UAS operations in urban areas. These flights may pose safety risks to persons and property on the ground, which are referred to as third-party risks. Path-planning methods have been developed to generate a nominal flight path for each UAS flight that poses relative low third-party risks by passing over less risky areas, e.g., areas with low-density unsheltered populations. However, it is not clear if risk minimization per flight works well in a commercial UAS operation that involves a large number of annual flights in an urban area. Recently, it has been shown that when using shortest flight path planning, a UAS-based parcel delivery service in an urban area can lead to society-critical third-party risk levels. The aim of this paper is to evaluate the mitigating effect of state-of-the-art risk-aware path planning on these society-critical third-party risk levels. To accomplish this, a third-party risk simulation using the shortest paths is extended with a state-of-the-art risk-aware path-planning method, and the societal effects on third-party risk levels have been assessed and compared to those obtained using shortest paths. The results show that state-of-the-art risk-aware path planning can reduce the total number of fatalities in an area, but at the cost of a critical increase in safety risks for persons living in areas that are favored by a state-of-the-art risk-aware path-planning method.

Funder

Hong Kong Research Grants Council

City University of Hong Kong Strategic Research Grant

Publisher

MDPI AG

Subject

Aerospace Engineering

Reference48 articles.

1. Circular 328-AN/190. Unmanned Aircraft Systems (UAS), 2011.

2. Kersten, H., Benedikt, K., and Robin, R. Advanced Air Mobility in 2030. 2021. 2022.

3. eVTOL/Urban Air Mobility TAM Update: A Slow Take-Off, But Sky’s the Limit. 2021. 2022.

4. A survey of motion planning algorithms from the perspective of autonomous UAV guidance;Goerzen;J. Intell. Robot. Syst.,2010

5. A note on two problems in connexion with graphs;Dijkstra;Numer. Math.,1959

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3