Dynamic Response of Phase Change Heat Exchange Unit with Layered Porous Media for Pulsed Electronic Equipment

Author:

Zhang Ruoji1ORCID,Zhang Jingyang2,Zhang Jingzhou1

Affiliation:

1. College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

2. College of Astronautics, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Abstract

Effective heat dissipation challenges transient high-power electronic devices in hypersonic vehicle cabins. This study introduces a Phase Change Heat Exchange Unit with Layered Porous Media (PCHEU–LPM) employing pulsed heat flow at the top and forced convection at the bottom. The primary aim was a comparative parametric study analyzing the thermal response of the heating surface under pulsed heat flow conditions. The geometric model was generated using electron microscopy images of manufactured objects and the numerical model was established based on the enthalpy–porosity method. Numerical simulations explored amplitude and frequency effects on pulsed thermal excitation, evaluating temperature and phase fields. A comprehensive time-frequency transformation assessed the temperature response. The results indicated an initial decrease and subsequent increase in interface temperature fluctuation with pulse heat flux amplitude growth. Temperature field uniformity correlated with natural convection strength in two-phase and liquid-phase regions. At mid and low frequencies, the phase change process increasingly suppressed interface temperature fluctuations. Optimal pulse thermal excitation selection was crucial for minimizing temperature fluctuations while maintaining the interface temperature within the expected phase transition range. In conclusion, a novel design concept is posited herein, aiming to enhance surface temperature uniformity and broaden the applicability of electronic devices through the manipulation of porosity rates.

Funder

National Natural Science Foundation of China

Aeronautical Science Foundation of China

Natural Science Foundation of Jiangsu Province, China

Advanced Jet Propulsion Innovation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3