Affiliation:
1. College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
2. College of Astronautics, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
Abstract
The Phase-Change Heat Exchanger Unit in Layered Porous Media (PCEU-LPM) is obtained through frozen pouring processing, and exhibits characteristics such as high thermal conductivity, high latent heat, and high permeability, making it suitable for dissipating heat in airborne electronic devices. This study numerically investigates the impact of aircraft speed acceleration conditions, which lead to weightlessness or overload, on the performance of the PCHEU-LPM, with a particular focus on the influence of natural convection in the liquid-phase region. Initially, a microscale thermal analysis model is established based on the Navier–Stokes equation scanning electron micrograph to calculate the effective thermal conductivity and permeability of the PCHEU-LPM under different porosities. Subsequently, these parameters are incorporated into a macroscale thermal analysis model based on Darcy’s law, employing an average parameter approach. Using the macroscale thermal analysis model, temperature and velocity fields are computed under various porosities, acceleration magnitudes, and directions. The calculation results indicate that as the acceleration increases from α = 0 to α = 10 g, the interface temperature of the PCHTU-LPM decreases by approximately 5.2 K, and the temperature fluctuation decreases by 2.4 K. If the porosity of the PCHTU-LPM is increased from ε = 70% to ε = 85%, the influence of acceleration change on natural convection will be further amplified, resulting in a decrease in the interface temperature of the PCHTU-LPM by approximately 10.2 K and a decrease in temperature fluctuation by 5.8 K. When the acceleration direction is +z, the interface temperature of the PCHTU-LPM is at its lowest, while it is highest when the acceleration direction is −z, with a maximum difference of 15.4 K between the two. When the acceleration direction is ±x and ±y, the interface temperature lies between the former two cases, with the interface temperature slightly higher for ±y compared to ±x, with a maximum difference of 3.9 K between them.
Funder
National Natural Science Foundation of China
Aeronautical Science Foundation of China
Natural Science Foundation of Jiangsu Province, China
Advanced Jet Propulsion Innovation