Characterizing Satellite Geometry via Accelerated 3D Gaussian Splatting

Author:

Nguyen Van Minh1ORCID,Sandidge Emma1,Mahendrakar Trupti12,White Ryan T.1ORCID

Affiliation:

1. NEural TransmissionS (NETS) Lab, Florida Institute of Technology, Melbourne, FL 32901, USA

2. Autonomy Lab, Florida Institute of Technology, Melbourne, FL 32901, USA

Abstract

The accelerating deployment of spacecraft in orbit has generated interest in on-orbit servicing (OOS), inspection of spacecraft, and active debris removal (ADR). Such missions require precise rendezvous and proximity operations in the vicinity of non-cooperative, possibly unknown, resident space objects. Safety concerns with manned missions and lag times with ground-based control necessitate complete autonomy. This requires robust characterization of the target’s geometry. In this article, we present an approach for mapping geometries of satellites on orbit based on 3D Gaussian splatting that can run on computing resources available on current spaceflight hardware. We demonstrate model training and 3D rendering performance on a hardware-in-the-loop satellite mock-up under several realistic lighting and motion conditions. Our model is shown to be capable of training on-board and rendering higher quality novel views of an unknown satellite nearly 2 orders of magnitude faster than previous NeRF-based algorithms. Such on-board capabilities are critical to enable downstream machine intelligence tasks necessary for autonomous guidance, navigation, and control tasks.

Publisher

MDPI AG

Reference40 articles.

1. Summary of NASDA’s ETS-VII robot satellite mission;Oda;J. Robot. Mechatron.,2000

2. Davis, T.M., and Melanson, D. (2004, January 12–16). XSS-10 microsatellite flight demonstration program results. Proceedings of the Spacecraft Platforms and Infrastructure, Orlando, FL, USA.

3. Air Force Research Laboratory (2011). XSS-11 Micro Satellite, Air Force Research Laboratory. Technical Report.

4. Air Force Research Laboratory (2014). Automated Navigation and Guidance Experiment for Local Space (ANGELS), Air Force Research Laboratory. Technical Report.

5. (2024, February 24). Intelsat. Available online: https://www.intelsat.com/resources/blog/mev-1-a-look-back-at-intelsats-groundbreaking-journey/.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Recent advances in 3D Gaussian splatting;Computational Visual Media;2024-07-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3