Affiliation:
1. College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
Abstract
Impellers are utilized to increase pressure to ensure that a radial pre-swirl system can provide sufficient cooling airflow to the turbine blades. In the open literature, the pressurization mechanism of the impellers was investigated. However, the effect of impellers on the cooling performance of the radial pre-swirl system was not clear. To solve the aforementioned problem, tests were carried out to assess the temperature drop in a radial pre-swirl system with various impeller configurations (impeller lengths l/b ranging from 0 to 0.333). Furthermore, numerical simulations were used to investigate the flow and heat transfer characteristics of the radial pre-swirl system at high rotating Reynolds numbers. Theoretical and experimental investigations revealed that the pre-swirl jet and output power generate a significant temperature drop, but the impellers have no obvious effect on the system temperature drop. By increasing the swirl ratio, the impellers reduce the field synergy angle and thus improve convective heat transfer on the turbine disk. In addition, increasing the impeller length can reduce the volume-averaged field synergy angle and improve heat transfer, but the improvement effectiveness decreases as the impeller length increases. Thus, the study concluded that impellers could improve the cooling performance of the radial pre-swirl system by enhancing disk cooling.
Funder
the National Science and Technology Major Project of China
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献