Adaptive Feed-Forward Control for Gust Load Alleviation on a Flying-Wing Model Using Multiple Control Surfaces

Author:

Zhang Liqi1,Zhao Yonghui1

Affiliation:

1. State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Abstract

Based on measured gust information, a multi-input multi-output (MIMO) adaptive feed-forward control scheme for gust load alleviation (GLA) on a semi-span flying-wing aircraft using multiple control surfaces is proposed. In order to remedy weight drift and biased estimation problems that are commonly encountered in adaptive control, the circular leaky LMS (CLLMS) algorithm is employed, which utilizes gust measurement information, filtered reference signals, and error signals to update controller parameters online. The results demonstrate that good load reductions are achieved in both continuous and discrete gust environments. For instance, the designed GLA control system leads to an 80.72% reduction in the root-mean-square (RMS) values of wing-root bending moment in the Dryden gust environment and a 77.59% reduction of its maximum value in the 1-cos discrete gust condition. Based on the limited power of the actuator and the limited authority for control surface deflections when integrating GLA into the flight control system, a weight-updating algorithm with deflection angle and rate constraints on control surfaces is proposed. The simulation results show that the strict constraints on control surface deflections will degrade the GLA performance. Finally, the influence of the partial jamming fault of actuators on GLA performance is studied. It is found that good GLA performance can be preserved despite the degraded performance during the initial stage of the actuator jamming fault. This is due to the robustness brought about by multiple control surfaces and the adaptability of the control algorithm.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Aerospace Engineering

Reference36 articles.

1. Gust pre-sensing devices for aircraft gust-alleviation systems;Barnaby;J. Frankl. Inst.,1955

2. Robust gust load alleviation of flexible aircraft equipped with lidar;Fournier;J. Guid. Control. Dynam.,2022

3. Hoblit, F.M. (1988). Gust Loads on Aircraft: Concepts and Applications, American Institute of Aeronautics and Astronautics, Inc.

4. Design of an open-loop gust alleviation control system for airborne gravimetry;Abdelmoula;Aerosp. Sci. Technol.,1999

5. Regan, C.D., and Jutte, C.V. (2012). Survey of Applications of Active Control Technology for Gust Alleviation and New Challenges for Lighter-Weight Aircraft, Dryden Flight Research Center. NASA/TM–2012-216008.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3