CMAG: A Mission to Study and Monitor the Inner Corona Magnetic Field

Author:

Orozco Suárez David12ORCID,del Toro Iniesta Jose Carlos12ORCID,Bailén Martínez Francisco Javier12ORCID,Balaguer Jiménez María12,Álvarez García Daniel12,Serrano Daniel3,Peñin Luis F.3,Vázquez-Ramos Alicia4ORCID,Bellot Rubio Luis Ramón12ORCID,Atienzar Julia12,Pérez Grande Isabel25,Torralbo Gimeno Ignacio25ORCID,Sanchis Kilders Esteban26ORCID,Gasent Blesa José Luis26ORCID,Hernández Expósito David27ORCID,Ruiz Cobo Basilio27ORCID,Trujillo Bueno Javier789,Erdélyi Robertus101112ORCID,Davies Jackie A.13ORCID,Green Lucie M.14ORCID,Matthews Sarah A.14ORCID,Long David M.15ORCID,Mathioudakis Michail15,Kintziger Christian16ORCID,Leenaarts Jorrit17,Fineschi Silvano18,Scullion Eamon19

Affiliation:

1. Instituto de Astrofísica de Andalucía (IAA-CSIC), Apdo. de Correos 3004, E-18080 Granada, Spain

2. Spanish Space Solar Physics Consortium (S3PC), 18008 Granada, Spain

3. SENER Aerospace, Severo Ochoa 4, E-28760 Tres Cantos, Spain

4. Departamento de Física Teórica y del Cosmos (DFTC), Universidad de Granada (UGR), Campus de Fuentenueva, E-18071 Granada, Spain

5. Instituto de Microgravedad “Ignacio da Riva”, Universidad Politécnica de Madrid, Plaza Cardenal Cisneros 3, E-28040 Madrid, Spain

6. Department of Electronic Engineering, Universitat de València Estudi General (UVEG), Avda. de la Universitat s/n, E-46100 Burjassot, Spain

7. Instituto de Astrofísica de Canarias, Vía Láctea, s/n, E-28080 Santa Cruz de Tenerife, Spain

8. Departamento de Astrofísica, Facultad de Física, Universidad de La Laguna, E-38200 Santa Cruz de Tenerife, Spain

9. Consejo Superior de Investigaciones Científicas, 28006 Madrid, Spain

10. Solar Physics & Space Plasma Research Center (SP2RC), School of Mathematics and Statistics, University of Sheffield, Hounsfield Road, Sheffield S3 7RH, UK

11. Department of Astronomy, Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary

12. Gyula Bay Zoltan Solar Observatory (GSO), Hungarian Solar Physics Foundation (HSPF), Petofi tér 3., H-5700 Gyula, Hungary

13. STFC-RAL Space, Harwell Campus, Didcot, Oxford OX11 0QX, UK

14. Mullard Space Science Laboratory, University College London, Dorking, Surrey, Dorking RH5 6NT, UK

15. Astrophysics Research Centre, School of Mathematics and Physics, Queen’s University Belfast, University Road, Belfast BT7 1NN, UK

16. Centre Spatial de Liège, STAR Institute, University of Liège (ULiège), B-4000 Liège, Belgium

17. Department of Astronomy, Institute for Solar Physics, Stockholm University, AlbaNova University Centre, SE-106 91 Stockholm, Sweden

18. INAF—Osservatorio Astrofisico di Torino, Via Osservatorio 20, 10025 Pino Torinese, Italy

19. Department of Mathematics, Physics and Electrical Engineering, Northumbria University, Newcastle upon Tyne NE1 8ST, UK

Abstract

Measuring magnetic fields in the inner corona, the interface between the solar chromosphere and outer corona, is of paramount importance if we aim to understand the energetic transformations taking place there, and because it is at the origin of processes that lead to coronal heating, solar wind acceleration, and of most of the phenomena relevant to space weather. However, these measurements are more difficult than mere imaging because polarimetry requires differential photometry. The coronal magnetograph mission (CMAG) has been designed to map the vector magnetic field, line-of-sight velocities, and plane-of-the-sky velocities of the inner corona with unprecedented spatial and temporal resolutions from space. This will be achieved through full vector spectropolarimetric observations using a coronal magnetograph as the sole instrument on board a spacecraft, combined with an external occulter installed on another spacecraft. The two spacecraft will maintain a formation flight distance of 430 m for coronagraphic observations, which requires a 2.5 m occulter disk radius. The mission will be preferentially located at the Lagrangian L5 point, offering a significant advantage for solar physics and space weather research. Existing ground-based instruments face limitations such as atmospheric turbulence, solar scattered light, and long integration times when performing coronal magnetic field measurements. CMAG overcomes these limitations by performing spectropolarimetric measurements from space with an external occulter and high-image stability maintained over time. It achieves the necessary sensitivity and offers a spatial resolution of 2.5″ and a temporal resolution of approximately one minute, in its nominal mode, covering the range from 1.02 solar radii to 2.5 radii. CMAG relies on proven European technologies and can be adapted to enhance any other solar mission, offering potential significant advancements in coronal physics and space weather modeling and monitoring.

Publisher

MDPI AG

Subject

Aerospace Engineering

Reference50 articles.

1. Coronal Loops: Observations and Modeling of Confined Plasma;Reale;Living Rev. Sol. Phys.,2014

2. Space weather: The solar perspective;Temmer;Living Rev. Sol. Phys.,2021

3. Are There Alfvén Waves in the Solar Atmosphere?;Fedun;Science,2007

4. Alfvén Waves in the Solar Atmosphere;Mathioudakis;Space Sci. Rev.,2013

5. Aschwanden, M.J. (2005). Physics of the Solar Corona. An Introduction with Problems and Solutions, Springer. [2nd ed.]. Library of Congress Control Number: 2005937065.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3