Effect of Al–Li Alloy on the Combustion Performance of AP/RDX/Al/HTPB Propellant

Author:

Xiong Weiqiang12ORCID,Liu Yunjie2,Zhang Tianfu2,Wu Shixi2,Zeng Dawen1,Guo Xiang2,Pang Aimin3

Affiliation:

1. School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China

2. Science and Technology on Aerospace Chemical Power Laboratory, 58 Qinghe Road, Xiangyang 441003, China

3. The Fourth Academy of CASC, Xi’an 710025, China

Abstract

Aluminium–lithium alloy (Al–Li alloy) powder has excellent ignition and combustion performance. The combustion product of Al–Li alloy powder combined with ammonium perchlorate is gaseous at the working temperature of solid rocket motors, which greatly reduces the loss of two-phase flow. Experimental investigations were thoroughly conducted to determine the effect of the Al–2.5Li (2.5 wt% lithium) content on propellant combustion and agglomeration based on thermogravimetry-differential scanning calorimetry, heat combustion, laser ignition, combustion diagnosis, a simulated 75 mm solid rocket motor and a condensed combustion products (CCPs) collection device. The results show that the exothermic heat and weight gain upon the thermal oxidation of Al–Li alloy is obviously higher than those of Al powder. Compared with the reference propellant’s formulation, Al–2.5Li leads to an increase in the burning rate and a decrease in the size of the condensed combustion products of the propellants. As the Al–2.5Li alloy content gradually increases from 0 wt% to 19 wt%, the burning rate increases from 5.391 ± 0.021 mm/s to 7.244 ± 0.052 mm/s at 7 MPa of pressure; meanwhile, the pressure exponent of the burning rate law is changed from 0.326 ± 0.047 to 0.483 ± 0.045, and the d43 of the combustion residue is reduced from 165.31 ± 36.18 μm to 12.95 ± 4.00 μm. Compared to the reference propellant’s formulation, the combustion efficiency of the HTPB propellant is increased by about 4.4% when the Al–2.5Li alloy content is increased from 0 to 19%. Therefore, Al–2.5Li alloy powder is a promising fuel for solid propellants.

Funder

National Natural Science Foundation of China

Open Foundation of the Science and Technology on Aerospace Chemical Power Laboratory

Publisher

MDPI AG

Subject

Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3