A Strong Form Meshless Method for the Solution of FGM Plates

Author:

Sator Ladislav,Sladek Vladimir,Sladek Jan

Abstract

Laminated composite structures suffer from failure because of concentrations of gradient fields on interfaces due to discontinuity of material properties. The rapid development of material science enables designers to replace classical laminated plate elements in aerospace structures with more advanced ones made of functionally graded materials (FGM), which are microscopic composite materials with continuous variation of material coefficients according to the contents of their micro-constituents. Utilization of FGM eliminates the inconvenience of laminated structures but gives rise to substantial changes in structural design This paper deals with the presentation of a strong formulation meshless method for the solution of FGM composite plates. Recall that the fourth-order derivatives of deflections are involved in the governing equations for plate structures. However, the high-order derivatives of field variables in partial differential equations (PDE) lead to increasing inaccuracy of approximations. For that reason, the decomposition of the high-order governing equations into the second-order PDE is proposed. For the spatial approximation of field variables, the meshless moving least square (MLS) approximation technique is employed. The reliability (numerical stability, convergence, and accuracy) as well as computational efficiency of the developed method is illustrated by several numerical investigations of the response of FGM plates with the transversal gradation of material coefficients under stationary and/or transient mechanical and thermal loadings.

Funder

Slovak Research and Development Agency

Scientific Grant Agency of the Ministry of Education, Science, Research and Sport of the Slovak Republic and Slovak Academy of Sciences

Publisher

MDPI AG

Subject

Aerospace Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3