Multisatellite Flyby Inspection Trajectory Optimization Based on Constraint Repairing

Author:

Peng Chenyuan,Zhang Jin,Yan Bing,Luo Yazhong

Abstract

With the rapid development of on-orbit services and space situational awareness, there is an urgent demand for multisatellite flyby inspection (MSFI) that can obtain information about a large number of space targets with little fuel consumption in a short time. There are two kinds of constraints, namely inspection constraints (ICs) at each flyby point and transfer process constraints (TPCs) in the actual mission. Further considering the influence of discrete and continuous variables such as inspection sequence, time, and maneuver scheme, it is complex and difficult to solve MSFI. To optimize it efficiently, the task flow and the problem model are defined firstly. Then, the algorithm framework based on constraint repairing is given, which contains repair methods of the ICs and the TPCs. Finally, the proposed method is compared with the nonrepair optimization method in two numerical examples. The results indicate that when the constraints are hard to meet, it is better and more efficient than the nonrepair method.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Aerospace Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. GEO satellite on-orbit refueling and debris removal hybrid mission planning under uncertainty;Advances in Space Research;2024-09

2. Research on relative reachable domain in target orbit for maneuvering spacecraft;Aircraft Engineering and Aerospace Technology;2024-07-09

3. Optimal Planning of Multiple Geosynchronous Spacecraft Flyby Inspection Mission with Multiple Servicing Space Robots;International Journal of Aeronautical and Space Sciences;2024-05-04

4. Optimal Pose Design for Close-Proximity On-Orbit Inspection;Journal of Guidance, Control, and Dynamics;2024-04

5. Optimal planning of a space cleaning robot for active GEO debris removal mission;2023 IEEE International Conference on Robotics and Biomimetics (ROBIO);2023-12-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3