Data Assimilation of Ideally Expanded Supersonic Jet Using RANS Simulation for High-Resolution PIV Data

Author:

Ozawa Yuta1ORCID,Nonomura Taku2ORCID

Affiliation:

1. Department of Mechanical Engineering, Aoyama Gakuin University, Sagamihara 252-5258, Kanagawa, Japan

2. Department of Aerospace Engineering, Nagoya University, Nagoya 464-8603, Aichi, Japan

Abstract

Data assimilation using particle image velocimetry (PIV) and Reynolds-averaged Navier–Stokes (RANS) simulation was performed for an ideally expanded supersonic jet flying at a Mach number of 2.0. The present study aims to efficiently reconstruct all the physical quantities in the aeroacoustic fields that match well with a realistic, experimentally obtained flow field. The two-dimensional, two-component PIV measurement was applied to the jet axis plane, and the time-averaged velocity field was obtained using single-pixel ensemble correlation. Two-dimensional axisymmetric RANS simulation using the Menter shear stress transport (SST) model was also performed, and the parameters of the SST model were optimized via data assimilation using the ensemble Kalman filter. The standard deviation of the observation noise σ, which is a parameter of the ensemble Kalman filter, is estimated by the previously proposed method (Nakamura et al., Low-Grid-Resolution-RANS-Based Data Assimilation of Time-Averaged Separated Flow Obtained by LES. Int. J. Comp. Fluid. Dyn., 2022), and its effectiveness was investigated for the first time. This method effectively estimated the magnitude of σ at each generation without tuning the hyperparameters. The assimilated flow fields exhibited similar flow structures observed in PIV such as the potential core length or shear layer. Therefore, the present framework can be used to estimate time-averaged full flow fields that match well with experimentally observed flow fields, and has the potential to construct a database for the Navier-Stokes-based stability analysis that requires a full flow field.

Funder

Japan Society for the Promotion of Science

Publisher

MDPI AG

Reference52 articles.

1. Supersonic jet noise;Tam;Annu. Rev. Fluid Mech.,1995

2. Supersonic jet screech: Half-century from Powell to the present;Raman;J. Sound Vib.,1999

3. High-speed jet noise;Bailly;Mech. Eng. Rev.,2016

4. Modelling of jet noise: A perspective from large-eddy simulations;Lele;Philos. Trans. R. Soc. A,2019

5. Turbulence and sound-field POD analysis of a turbulent jet;Freund;Int. J. Aeroacoustics,2009

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3