Weather Variability Induced Uncertainty of Contrail Radiative Forcing

Author:

Wilhelm LenaORCID,Gierens KlausORCID,Rohs SusanneORCID

Abstract

Persistent contrails and contrail cirrus are estimated to have a larger impact on climate than all CO2 emissions from global aviation since the introduction of jet engines. However, the measure for this impact, the effective radiative forcing (ERF) or radiative forcing (RF), suffers from uncertainties that are much larger than those for CO2. Despite ongoing research, the so called level of scientific understanding has not improved since the 1999 IPCC Special Report on Aviation and the Global Atmosphere. In this paper, the role of weather variability as a major component of the uncertainty range of contrail cirrus RF is examined. Using 10 years of MOZAIC flights and ERA-5 reanalysis data, we show that natural weather variability causes large variations in the instantaneous radiative forcing (iRF) of persistent contrails, which is a major source for uncertainty. Most contrails (about 80%) have a small positive iRF of up to 20 W m−2. IRF exceeds 20 W m−2 in about 10% of all cases but these have a disproportionally large climate impact, the remaining 10% have a negative iRF. The distribution of iRF values is heavily skewed towards large positive values that show an exponential decay. Monte Carlo experiments reveal the difficulty of determining a precise long-term mean from measurement or campaign data alone. Depending on the chosen sample size, calculated means scatter considerably, which is caused exclusively by weather variability. Considering that many additional natural sources of variation have been deliberately neglected in the present examination, the results suggest that there is a fundamental limit to the precision with which the RF and ERF of contrail cirrus can be determined. In our opinion, this does not imply a low level of scientific understanding; rather the scientific understanding of contrails and contrail cirrus has grown considerably over recent decades. Only the determination of global and annual mean RF and ERF values is still difficult and will probably be so for the coming decades, if not forever. The little precise knowledge of the RF and ERF values is, therefore, no argument to postpone actions to mitigate contrail’s warming impact.

Funder

European Commission

Publisher

MDPI AG

Subject

Aerospace Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3