A Research on Rotor/Ship Wake Characteristics under Atmospheric Boundary Layer Conditions

Author:

Li Guoqiang12,Wang Qing3ORCID,Zhao Qijun4,Zhao Guoqing4,Feng Fei5,Wu Linxin2

Affiliation:

1. College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, China

2. Low Speed Aerodynamics Institute, China Aerodynamics Research and Development Center, Mianyang 621000, China

3. School of Energy and Power Engineering, Lanzhou University of Technology, Lanzhou 730050, China

4. College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

5. China Academy of Launch Vehicle Technology, Beijing 100076, China

Abstract

The environment for the shipboard landing and takeoff of helicopters is extremely complex and significantly affects their safe flight. To address the intricate characteristics of the flow field during these operations, a simulation method suitable for rotor/ship wake vortex interaction is developed. This method couples the Delayed Detached Eddy Simulation (DDES) method and the momentum source method. The simulation of flow field characteristics of the SFS2 ship model under different conditions reveals that, in a rotor/ship coupling scenario, the inflow velocity in the wake zone of the flight deck is distributed in a “W” shape due to the influence of the rotor blade tip vortex. Under wind shear conditions, the rotor’s influence on the wake is reduced, resulting in smaller velocity fluctuations compared to uniform inflow conditions. Moreover, the detached eddy is suppressed to some extent. It can be concluded that shear flow mitigates the unsteady characteristics of the ship’s wake zone to some extent, which is beneficial to helicopter operations during takeoff and landing.

Funder

China aerodynamics research and development center

Publisher

MDPI AG

Subject

Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3