Adaptive Neural Network Global Fractional Order Fast Terminal Sliding Mode Model-Free Intelligent PID Control for Hypersonic Vehicle’s Ground Thermal Environment

Author:

Lv Xiaodong1,Zhang Guangming1ORCID,Bai Zhiqing1,Zhou Xiaoxiong1,Shi Zhihan1,Zhu Mingxiang1

Affiliation:

1. College of Electrical Engineering and Control Science, Nanjing Tech University, Nanjing 211899, China

Abstract

In this paper, an adaptive neural network global fractional order fast terminal sliding mode model-free intelligent PID control strategy (termed as TDE-ANNGFOFTSMC-MFIPIDC) is proposed for the hypersonic vehicle ground thermal environment simulation test device (GTESTD). Firstly, the mathematical model of the GTESTD is transformed into an ultra-local model to ensure that the control strategy design process does not rely on the potentially inaccurate dynamic GTESTD model. Meanwhile, time delay estimation (TDE) is employed to estimate the unknown terms of the ultra-local model. Next, a global fractional-order fast terminal sliding mode surface (GFOFTSMS) is introduced to effectively reduce the estimation error generated by TDE. It also eliminates arrival time, accelerates the convergence speed of the sliding phase, guarantees finite time arrival, avoids the singularity phenomenon, and bolsters robustness. Then, as the upper bound of the disturbance error is unknown, an adaptive neural network (ANN) control is designed to approximate the upper bound of the estimation error closely and mitigate the chattering phenomenon. Furthermore, the stability of the control system and the convergence time are proven by the Lyapunov stability theorem and are calculated, respectively. Finally, simulation results are conducted to validate the efficacy of the proposed control strategy.

Funder

the Natural Science Foundation of Universities of Anhui Province

Publisher

MDPI AG

Subject

Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3