Neural Network Based Model Predictive Control for a Quadrotor UAV

Author:

Jiang BailunORCID,Li BoyangORCID,Zhou WeifengORCID,Lo Li-YuORCID,Chen Chih-KengORCID,Wen Chih-YungORCID

Abstract

A dynamic model that considers both linear and complex nonlinear effects extensively benefits the model-based controller development. However, predicting a detailed aerodynamic model with good accuracy for unmanned aerial vehicles (UAVs) is challenging due to their irregular shape and low Reynolds number behavior. This work proposes an approach to model the full translational dynamics of a quadrotor UAV by a feedforward neural network, which is adopted as the prediction model in a model predictive controller (MPC) for precise position control. The raw flight data are collected by tracking various pre-designed trajectories with PX4 autopilot. The neural network model is trained to predict the linear accelerations from the flight log. The neural network-based model predictive controller is then implemented with the automatic control and dynamic optimization toolkit (ACADO) to achieve real-time online optimization. Software in the loop (SITL) simulation and indoor flight experiments are conducted to verify the controller performance. The results indicate that the proposed controller leads to a 40% reduction in the average trajectory tracking error compared to the traditional PID controller.

Funder

The Hong Kong Polytechnic University

Publisher

MDPI AG

Subject

Aerospace Engineering

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3