Component-Level Modeling of More Electric Auxiliary Power Units for Cooperative Control

Author:

Zhang JiamingORCID,Fang Jun,Zhang Tianhong,Li LingweiORCID,Zhang XinglongORCID

Abstract

Today, the more electric aircraft (MEA) concept is gaining tremendous popularity. As a key component of the MEA, a more electric auxiliary power unit (MEAPU) integrated model with high accuracy and real-time performance is essential when conducting cooperative control and hardware-in-the-loop (HIL) test research. This paper proposes a novel MEAPU integrated model consisting of a MEAPU component-level-model (CLM) and a starter-generator (SG) model. Firstly, a MEAPU CLM was built and a continuous scaling method for the component characteristic map in the CLM is proposed to improve the model’s accuracy. Then, a double winding induction starter-generator (DWISG) model based on the electromagnetic theory, which is quite time consuming, was simplified using the pulse width modulation (PWM) rectifier linearization method. Finally, considering the coupling relationship between the MEAPU CLM and DWISG, an accurate real-time MEAPU integrated model was built and its simulation results were analyzed. Compared with the test results, the error of the proposed model was less than 0.5%; meanwhile its single-step simulation time was less than 20 ms, which can meet the demands of cooperative control and HIL test research. Furthermore, the continuous scaling method and PWM rectifier linearization method were found to be effective for modeling other MEAPUs and more electric engines (MEE).

Funder

National Natural Science Foundation of China

Postgraduate Research & Practice Innovation Program of Jiangsu Province

Publisher

MDPI AG

Subject

Aerospace Engineering

Reference44 articles.

1. The More Electric Aircraft-Assessing the Benefits;Jones;J. Aerosp. Eng.,2002

2. Feiner, L.J. (1993, January 28). Power-By-Wire Aircraft Secondary Power Systems. Proceedings of the 12th AIAA/IEEE Digital Avionics Systems Conference, Fort Worth, TX, USA.

3. Power Takes Flight;Weale;Power Eng.,2004

4. The More Electric Architecture Revolution;Verschoor;Aerotech Mag.,2005

5. Moving Towards a More Electric Aircraft;Rosero;IEEE AE Syst. Mag.,2007

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3