Organization Preference Knowledge Acquisition of Multi-Platform Aircraft Mission System Utilizing Frequent Closed Itemset Mining

Author:

Wu Yuqian1ORCID,Wang Miao1ORCID,Chu Wenkui2,Wang Guoqing1

Affiliation:

1. School of Aeronautics and Astronautics, Shanghai Jiao Tong University, Shanghai 200240, China

2. Aeronautics Engineering College, Air Force Engineering University, Xi’an 710100, China

Abstract

Organization preference knowledge is critical to enhancing the intelligence and efficiency of the multi-platform aircraft mission system (MPAMS), particularly the collaboration tactics of task behaviors, platform types, and mount resources. However, it is challenging to extract such knowledge concisely, which is buried in massive historical data. Therefore, this paper proposes an innovative data-driven approach via frequent closed itemset mining (FCIM) algorithm to discover valuable MPAMS organizational knowledge. The proposed approach addresses the limitations of poor effectiveness and low mining efficiency for the previously discovered knowledge. To ensure the knowledge effectiveness, this paper designs a multi-layer knowledge discovery framework from the system-of-systems perspective, allowing to discover more systematic knowledge than traditional frameworks considering an isolated layer. Additionally, the MPAMS’s contextual capability reflecting the decision motivation is integrated into the knowledge representation, making the knowledge more intelligible to decision-makers. Further, to ensure mining efficiency, the knowledge mining process is accelerated by designing an itemset storage structure and three pruning strategies for FCIM. The simulation of 1100 air-to-sea assault scenarios has provided abundant knowledge with high interpretability. The performance superiority of the proposed approach is thoroughly verified by comparative experiments. The approach provides guidance and insights for future MPAMS development and organization optimization.

Funder

Shanghai Jiao Tong University

Natural Science Foundation of Shanghai

Publisher

MDPI AG

Subject

Aerospace Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3