Structural Characteristics of a Shock Train Flow Field in a Variable Cross-Section S-Shaped Isolator

Author:

Yan Yuepeng,Fan Xiaoqiang,Xiong Bing

Abstract

Experiments were conducted in this study to reveal the flow characteristics of a variable cross-section S-shaped isolator, when applying the steady-state back pressure at the isolator outlet. The self-excited oscillation characteristics of the shock train generated under the influence of steady-state back pressure at an incoming flow speed of Mach 2, were also studied. The findings suggest that pressure oscillation within the area affected by the shock train’s flow field was significantly more potent than outside the affected area. Moreover, the forward movement velocity of the shock train in the variable cross-section S-shaped isolator was not uniform. The forward movement speed was slower when encountering sharp turns and faster during gentle turns. In the shock train flow field, high-frequency pressure oscillations, which mainly stemmed from the oscillations of the separated shock legs, propagated more readily within the flow field than low-frequency pressure oscillations. The significant separation of the shock train flow field will switch between the top and bottom walls, and the frequency of pressure oscillation in the large separation region is low. On another note, the closer the distance between two points is in the shock flow field, the stronger the coherence of pressure oscillations will be. In the distance upstream of the shock train flow field, the turbulent boundary layer (TBL) determines pressure oscillations instead of the shock train flow field, so the coherence was very high.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Aerospace Engineering

Reference20 articles.

1. Structure of shock waves in cylindrical ducts;Waltrup;AIAA J.,1973

2. Direct-connect test of hydrogen-fueled supersonic combustion;Waltrup;Symp. Combust.,1977

3. Billig, F.S. (1992, January 6–9). Research on supersonic combustion. Proceedings of the AIAA Aerospace Science Meeting, Reno, NV, USA.

4. The interaction of shock wave and heat addition in the design of supersonic combustors;Billig;Symp. Combust.,1969

5. Tian, X. (2008). Investigation of Flow in a Variable Cross-Section Isolator. [Master’s Thesis, Nanjing University of Aeronautics and Astronautics].

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3