Analytic Solution of Optimal Aspect Ratio of Bionic Transverse V-Groove for Drag Reduction Based on Vorticity Kinetics

Author:

Li Zhiping,He Long,Zuo Yueren,Meng Bo

Abstract

Previous studies have implied that the AR (aspect ratio) of the transverse groove significantly affects the stability of the boundary vortex within the groove and thus drives the variation in the drag-reduction rate. However, there is no theoretical model describing the relationship between the AR and the stability of the boundary vortex, resulting in difficulty in developing a forward method to obtain the optimum AR. In this paper, the velocity potential of the groove sidewalls to the boundary vortex is innovatively described by an image vortex model, thus establishing the relationship between the AR and the induced velocity. Secondly, the velocity profile of the migration flow is obtained by decomposing the total velocity inside the groove, by which the relationship between the AR and the migration velocity is established. Finally, the analytical solution of the optimal AR (ARopt = 2.15) is obtained based on the kinematic condition for boundary vortex stability, i.e., the induced velocity equals the migration velocity, and the forms of boundary vortex motion at other ARs are discussed. Furthermore, the stability of the boundary vortex at the optimal AR and the corresponding optimal drag-reduction rate are verified by the large eddy simulations method. At other ARs, the motion forms of the boundary vortex are characterized by “vortex shedding” and “vortex sloshing,” respectively, and the corresponding drag-reduction rates are smaller than those for vortex stability.

Funder

National Natural Science Foundation of China

National Science and Technology Major Project

Publisher

MDPI AG

Subject

Aerospace Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3