Plasma-Assisted Control of Supersonic Flow over a Compression Ramp

Author:

Watanabe Yasumasa,Houpt Alec,Leonov Sergey

Abstract

This study considers the effect of an electric discharge on the flow structure near a 19.4° compression ramp in Mach-2 supersonic flow. The experiments were conducted in the supersonic wind tunnel SBR-50 at the University of Notre Dame. The stagnation temperature and pressure were varied in a range of 294–600 K and 1–3 bar, respectively, to attain various Reynolds numbers ranging from 5.3 × 105 to 3.4 × 106 based on the distance between the exit of the Mach-2 nozzle and the leading edge of the ramp. Surface pressure measurements, schlieren visualization, discharge voltage and current measurements, and plasma imaging with a high-speed camera were used to evaluate the plasma control authority on the ramp pressure distribution. The plasma being generated in front of the compression ramp shifted the shock position from the ramp corner to the electrode location, forming a flow separation zone ahead of the ramp. It was found that the pressure on the compression surface reduced almost linearly with the plasma power. The ratio of pressure change to flow stagnation pressure was also an increasing function of the ratio of plasma power to enthalpy flux, indicating that the task-related plasma control effectiveness ranged from 17.5 to 25.

Funder

Japan Society for the Promotion of Science

Publisher

MDPI AG

Subject

Aerospace Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3