Study on Aerodynamic Design of the Front Auxiliary Inlet

Author:

Zhang Junyao1,Zhan Hao1,Mi Baigang1

Affiliation:

1. School of Aeronautics, Northwestern Polytechnical University, Xi’an 710072, China

Abstract

Submerged inlets have been widely used in advanced aircraft due to their excellent stealth characteristics, but they also suffer from poor aerodynamic performance. To improve the aerodynamic efficiency while maintaining stealth capabilities, this paper proposes a design scheme for a front auxiliary inlet with an inlet grille. The front auxiliary inlet is connected to the main inlet to form a composite inlet system. The low-energy upstream airflow that accumulates at the inlet is guided by the front auxiliary inlet to flow into the mainstream, resulting in a stable and high-quality airflow. A certain type of cruise missile was used as the research subject, and intake systems with and without front auxiliary inlets were constructed to compare the inlet performance of the two configurations using the CFD method. Additionally, a sensitivity analysis of the main design parameters of the front auxiliary inlet was carried out. The study reveals that a reasonable design of the front auxiliary inlet can prevent low-energy airflow, which accumulates on the missile body surface, from directly entering the inlet. Moreover, the front auxiliary inlet can inject additional mechanical energy into the low-energy airflow, inhibit airflow separation, and improve the uniformity of the flow field. Under cruise conditions, the total pressure recovery coefficient of the front auxiliary inlet configuration increased by 12.39% compared to the model without a front auxiliary inlet configuration. Furthermore, the total pressure distortion index was reduced by 47.24%.

Funder

National Natural Science Foundation of China

Natural Science Basic Research Program of Shaanxi

Publisher

MDPI AG

Subject

Aerospace Engineering

Reference39 articles.

1. Review of RCS measurement and imaging methods of stealth aircraft;Jia;J. Natl. Univ. Def. Technol.,2022

2. Integrated Investigation of Aerodynamic Shape and Stealth Performance for Supersonic Vehicle with “X” Sawtooth Lip Inlet;Zheng;J. Propul. Technol.,2017

3. A Study on Stealth Technology in UAV Inlet Design;Yu;Flight Dyn.,2007

4. Electromagnetic Scattering of a Submerged Inlet;Shi;Acta Aeronaut. Astronaut. Sin.,2008

5. Study on computing separating flows within a diffusion inlet S-duct;Anderson;J. Propuls. Power,1994

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3