Experimental Validation for the Performance of MR Damper Aircraft Landing Gear

Author:

Jo Bang-Hyun,Jang Dae-Sung,Hwang Jai-HyukORCID,Choi Yong-Hoon

Abstract

The landing gear of an aircraft serves to mitigate the vibration and impact forces transmitted from the ground to the fuselage. This paper addresses magneto-rheological (MR) damper landing gear, which provides high shock absorption efficiency and excellent stability in various landing conditions by adjusting the damping force using external magnetic field intensity. The performance and stability of an MR damper was verified through numerical simulations and drop tests that satisfied aviation regulations for aircraft landing gear. In this study, a prototype MR damper landing gear, a drop test jig, and a two-degree-of-freedom model were developed to verify the performance of the MR damper, with real-time control, for light aircraft landing gear. Two semi-active control algorithms, skyhook control and hybrid control, were applied to the MR damper landing gear. The drop tests were carried out under multiple conditions, and the results were compared with numerical simulations based on the mathematical model. It was experimentally verified that as the shock absorption efficiency increased, the landing gear’s cushioning performance significantly improved by 17.9% over the efficiency achieved with existing passive damping.

Funder

the Ministry of Trade, Industry & Energy

Publisher

MDPI AG

Subject

Aerospace Engineering

Reference34 articles.

1. Analytical Investigation of the Landing Dynamics of a Large Airplane with a Load-Control System in the Main Landing Gear;McGehee,1979

2. Analysis of Landing-Gear Behavior;Milwitzky,1953

3. Robust and optimal control of shimmy vibration in aircraft nose landing gear

4. Shimmy analysis of a simple aircraft nose landing gear model using different mathematical methods

5. Aircraft Landing Gear Design: Principles and Practices;Currey,1988

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3