The Linear Stability of Liquid Film with Oscillatory Gas Velocity

Author:

Deng Xiangdong1,Shi Baolu12,Tang Yong12ORCID,Wang Ningfei1

Affiliation:

1. School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China

2. Chongqing Innovation Center, Beijing Institute of Technology, Chongqing 404100, China

Abstract

The present study theoretically investigated the linear instability of a liquid film sheared by gas flow under acoustic oscillations. In this work, the velocity oscillations of the gas are used to approximately characterize the acoustic oscillations, and the ratio of the conduction heat flux to the evaporation heat flux is used to characterize the heat and mass transfer. Considering the much stronger impact of the heat convection than the heat conduction in practical cases, a correction factor is introduced to satisfy the heat flux ratio within a reasonable range. Because of the oscillatory velocity of gas, several unstable regions, involving the KHI region and the parametric instability (PI) region, appear. The impact of the velocity oscillations on the KHI is related to the forcing frequency. Increasing the oscillatory velocity amplitude promotes the KHI when the forcing frequency is large, while the KHI is restrained with the increase in the oscillatory velocity amplitude when the forcing frequency is small. Since the viscous dissipation is enhanced when the forcing oscillations frequency increases, the PI is suppressed. In addition, when the surface tension decreases, the interfacial instability is also promoted. Increasing the gas–liquid density ratio can destabilize the surface. However, the impact of the heat and mass transfer on the interfacial instability is neglectable as the gas–liquid density ratio is large. Furthermore, the heat and mass transfer have a promoting impact on the PI and KHI, while their destabilizing effect on the indentation between unstable regions is greater. It is significant to note that the location of the maximum growth rate would be in the most unstable region.

Funder

National Natural Science Foundation of China

Science Center for Gas Turbine Project

Publisher

MDPI AG

Subject

Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3