A Survey of Precision Formation Relative State Measurement Technology for Distributed Spacecraft

Author:

Zhang Zhang,Deng Lei,Feng Jiaqi,Chang Liang,Li Dong,Qin Yilin

Abstract

High-precision relative-state measurement technology is one of the key technologies for achieving the precision formation flying of distributed spacecraft. This paper conducts a comprehensive analysis of the precision formation-flying projects of distributed spacecraft in various countries. In the context of practical application, the specific mission configuration, orbit distribution, measurement technology, and payload of the project are summarized. On this basis, the relative state measurement techniques are outlined for the first time, using non-autonomous measurement techniques, autonomous measurement techniques, and new composite relative measurement techniques. A detailed analysis of GNSS (Global Navigation Satellite System)—relative measurement, laser measurement, infrared measurement, RF measurement, visible light visual measurement, and multiple composite measurement methods is conducted. The applicable scenarios of each measurement method are thoroughly discussed from several aspects, such as the technical scheme, system design, accuracy requirements, advantages, and shortcomings. In addition, this paper proposes the concept of adopting a multidisciplinary optimization architecture from the perspective of the overall design of the precision formation of the distributed spacecraft. It enables relative-state measurement payload selection and property indicator optimization, on the premise of optimizing the overall formation performance. Finally, the optimization direction and future development trend of the spacecraft precision formation flight project and relative state measurement technology are established.

Funder

Formation Flying Focusing Optics Hard X-ray Solar Telescope

Publisher

MDPI AG

Subject

Aerospace Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3