Feasibility Study of Electrified Light-Sport Aircraft Powertrains

Author:

McQueen Madeline,Karataş Ahmet E.,Bramesfeld Götz,Demir Eda,Arenas Osvaldo

Abstract

A theory-based aerodynamic model developed and applied to electrified powertrain configurations was intended to analyze the feasibility of implementing fully electric and serial hybrid electric propulsion in light-sport aircraft. The range was selected as the primary indicator of feasibility. A MATLAB/Simulink environment was utilized to create the models, involving the combination of proportional-integral-derivative controllers, aerodynamic properties of a reference aircraft, and powertrain limitations taken from off-the-shelf components. Simulations conducted by varying missions, batteries, fuel mass, and energy distribution methods provided results showcasing the feasibility of electrified propulsion with current technology. Results showed that the fully electric aircraft range was only 5% of a traditionally powered aircraft with current battery technology. Hybrid electric aircraft could achieve 44% of the range of a traditionally powered aircraft, but this result was found to be almost wholly related to fuel mass. Hybrid electric powertrains utilizing an energy distribution with their optimal degree of hybridization can achieve ranges up to 3% more than the same powertrain utilizing a different energy distribution. Results suggest that improvements in the power-to-weight ratio of the existing battery technology are required before electrified propulsion becomes a contender in the light-sport aircraft segment.

Funder

National Research Council Canada

Publisher

MDPI AG

Subject

Aerospace Engineering

Reference36 articles.

1. World Energy Outlook 2020—Executive Summary,2020

2. The Sustainability of Aviation—A Statement of the Chief Technology Officers of Seven of the World’s Major Aviation Manufacturers;Klauke,2021

3. Control of air pollution from aircraft and aircraft engines: GHG emission standards and test procedures,2021

4. Fact Sheet: The Growth in Greenhouse Gas Emissions from Commercial Aviation—Part 1 of a Series on Airlines and Climate Change;Overton,2019

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3