Direct-Adaptive Nonlinear MPC for Spacecraft Near Asteroids

Author:

Tiwari MadhurORCID,Coyle Eric,Prazenica Richard J.

Abstract

In this work, we propose a novel controller based on a simple adaptive controller methodology and model predictive control (MPC) to generate and track trajectories of a spacecraft in the vicinity of asteroids. The control formulation is based on using adaptive control as a feedback controller and MPC as a feed-forward controller. The spacecraft system model, asteroid shape and inertia are assumed to be unknown, with the exception of the estimated total mass and angular velocity of the asteroid. The MPC is used to generate feed-forward trajectories and control input using only the mass and angular velocity of the asteroid combined with obstacle avoidance constraints. However, since the control input from MPC is calculated using only an approximated model of the asteroid, it fails to control the spacecraft in the presence of disturbances due to the asteroid’s irregular gravitational field. Hence, we propose an adaptive controller in conjunction with MPC to handle unknown disturbances. The numerical results presented in this work show that the novel control system is able to handle unknown disturbances while generating and tracking sub-optimal trajectories better than adaptive control or MPC solely.

Publisher

MDPI AG

Subject

Aerospace Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3