Retrieval of the Stratospheric Density by the Star Occultation

Author:

Wang Kedong1,Li Zhennan1,Zhang Shaoxiong2

Affiliation:

1. School of Astronautics, Beihang University, Beijing 100191, China

2. Institute of Remote Sensing Satellite, China Academy of Space Technology, Beijing 100094, China

Abstract

The navigation by the stellar refraction is important for a LEO (Low-Earth-Orbit) satellite, especially in a GNSS (Global Navigation Satellite System)-denied environment, since it is totally autonomous. However, the biggest barrier to the accurate navigation by the stellar refraction lies in the accurate stratospheric density. Therefore, the retrieval of the stratospheric density by the star occultation is proposed in this paper to acquire the stratospheric density globally with the high accuracy. Compared with the retrieval of the stratospheric density by the GPS (Global Positioning System) radio occultation, the retrieval by the star occultation can achieve a high vertical resolution. The retrieval of the stratospheric density by the star occultation is first derived in principle. Then, the performance of the retrieval, including the spatial resolution, the atmospheric attenuation, and the accuracy, was investigated in detail. The performance of the retrieval was also comprehensively verified by simulations. The simulation results prove that the retrieval of the stratospheric density by the star occultation can achieve a similar accuracy to that by the GPS radio occultation, but it has a higher vertical resolution than that by the GPS radio occultation, which is good for improving the accuracy of the navigation by the stellar refraction.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3