Aerodynamic Thermal Simulation and Heat Flux Distribution Study of Mechanical Expansion Reentry Vehicle

Author:

Sun Junjie1,Zhu Hao1,Xu Dajun1,Cai Guobiao1

Affiliation:

1. School of Astronautics, Beihang University, Beijing 100191, China

Abstract

The mechanical expansion reentry vehicle has become the focus of deep space exploration because of its good deceleration effect and high stability. However, due to its special aerodynamic shape, its surface heat flux characteristics are different from traditional reentry vehicles. In this paper, the Two-Temperature model is introduced to simulate heat flux distribution. The influence of different structure parameters and flight parameters on the flow field structure and surface heat flux is also analyzed. The research shows that the Two-Temperature model can improve the prediction accuracy and that the heat flux may peak at the both the head and shoulder of the vehicle. Structural parameters RB, RN, and θ have an obvious negative effect on QO. RB, RN, RR, and LZ have a negative correlation with QR. QR drops first and then rises as θ increases and RS decreases. Flight parameters Ma have a positive effect on QO and QR while H is negative; α makes the heat flux distribution asymmetric.

Funder

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Aerospace Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3