Polyatomic Ion-Induced Electron Emission (IIEE) in Electrospray Thrusters

Author:

Magnusson Jared M.ORCID,Collins Adam L.ORCID,Wirz Richard E.ORCID

Abstract

To better characterize the lifetime and performance of electrospray thrusters, electron emission due to electrode impingement by the propellant cation 1-ethyl-3-methylimidazolium (EMI+) has been evaluated with semi-empirical modeling techniques. Results demonstrate that electron emission due to grid impingement by EMI+ cations becomes significant once EMI+ attains a threshold velocity of ∼9×105 cm s−1. The mean secondary electron yield, γ¯, exhibits strong linearity with respect to EMI+ velocity for typical electrospray operating regimes, and we present a simple linear fit equation corresponding to thruster potentials greater than 1 kV. The model chosen for our analysis was shown to be the most appropriate for molecular ion bombardments and is a useful tool in estimating IIEE yields in electrospray devices for molecular ion masses less than ∼1000 u and velocities greater than ∼106 cm s−1. Droplet-induced electron emission (DIEE) in electrospray thrusters was considered by treating a droplet as a macro-ion, with low charge-to-mass ratio, impacting a solid surface. This approach appears to oversimplify back-spray phenomena, meaning a more complex analysis is required. While semi-empirical models of IIEE, and the decades of solid state theory they are based upon, represent an invaluable advance in understanding secondary electron emission in electrospray devices, further progress would be gained by investigating the complex surfaces the electrodes acquire over their lifetimes and considering other possible emission processes.

Publisher

MDPI AG

Subject

Aerospace Engineering

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3