A Text-Driven Aircraft Fault Diagnosis Model Based on Word2vec and Stacking Ensemble Learning

Author:

Zhou ShenghanORCID,Wei Chaofan,Li Pan,Liu Anying,Chang Wenbing,Xiao YiyongORCID

Abstract

Traditional aircraft maintenance support work is mainly based on structured data. Unstructured data, such as text data, have not been fully used, which means there is a waste of resources. These unstructured data contain a great storehouse of fault knowledge, which could provide decision support for aircraft maintenance support work. Therefore, a text-based fault diagnosis model is proposed in this paper. The proposed method uses Word2vec to map text words into vector space, and the extracted text feature vectors are then input into the classifier based on a stacking ensemble learning scheme. Its performance has been validated using a real aircraft fault text dataset. The results show that the fault diagnosis accuracy of the proposed method is 97.35%, which is about 2% higher than that of the suboptimal method.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3